
Supplemental Materials to Lab 2 of QM3

Shane Xinyang Xuan
ShaneXuan.com

Department of Political Science
University of California, San Diego

April 11, 2018

1 When not using a LPM?

The linear probability model (LPM) implies that a ceteris paribus unit increase in xj always changes
Pr(y = 1|X) by the same amount, regardless of the value of xj , and this assumption might not
be sensible in many situations. Moreover, LPM can produce fitted values that are outside the unit
interval [0, 1].

2 Building blocks for Binary Choice Model

The logit function is:

logit(π) = log

(
π

1− π

)
(1)

The inverse logit is:

logit−1(π) =
eπ

1 + eπ
=

1

1 + e−π
(2)

3 Choice of the Link Function

The systematic binary choice model is:

yi ∝ Bern(yi|πi) (3)

πi = g(Xiβ) (4)

The choice of g(·) is arbitrary, but a common choice is logit−1:

πi = logit−1(Xiβ)⇔ logit(πi) = Xiβ (5)

=
1

1 + e−Xiβ
(6)

We might also consider a probit model, which is the inverse of the Normal CDF. Consider that we
have a latent variable y∗:

y∗i = Xiβ + ε, ε ∼ N (0, 1), (7)
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and we observe y:

yi =

{
1, y∗i > 0,

0, otherwise
(8)

Then, the probability of observing yi = 1 given Xi is:

Pr(yi = 1|Xi) = Pr(y∗i > 0) (9)

= Pr(Xiβ + ε > 0) (10)

= Pr(ε < Xiβ) (11)

= Φ(Xiβ) (12)

≡ probit−1(Xiβ) (13)

Remark The probit is the inverse of the Normal CDF and vice versa.

4 Interpretation

4.1 Marginal Effect

Now, let’s briefly discuss ways in which to analyze the regression outputs. For example, we can
compute the derivative of the logit at the central value, and differentiate the function logit−1(Xiβ)
with respect to xk:

∂πi
∂xki

= βk
−e−Xiβ

(1 + e−Xiβ)
2 (14)

Note that Equation (14) indicates that the change in the predicted outcome induced by a change
in xk depends not only on βk, but also on the value of xk and the values of all the other covariates
in the model. That is, it is not very intuitive to interpret the results from logit models in terms of
marginal effects.

4.2 Direct Interpretation

The interpretation of coefficients in a logit model is log odds. To see this, consider Eq (6). With
basic transformation:

πi + πie
−Xiβ = 1 (15)

1− πi
πi

= e−Xiβ (16)

log

(
πi

1− πi

)
= Xiβ (17)

where log πi
1−πi is the “log odds.” Hence, we may interpret coefficients in the following way: a 1-unit

increase in xj increases the log odds of y by βj , which is quite unintuitive as well.

Remark To illustrate this point, suppose we run the following model in Stata: logit honor math,
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and the coeffient of math is 0.156, with an intercept of -9.794. Then, we can write

yi ∝ Bern(yi|πi)
πi = logit−1(β1math + β0)

logit(π) = 0.156math− 9.794

= log
π

1− π
logit(π)math54 = 0.156(54)− 9.794

logit(π)math55 = 0.156(55)− 9.794

logit(π)math55 − logit(π)math54 = 0.156

That is, for a one-unit increase in math, the expected change in log odds is 0.156.

Remark Note that we can convert the change in log odds to change in odds, by exponentiating
the log odds:

exp

(
log

π

1− π
(math55)

− log
π

1− π
(math54)

)
= e0.156

exp
(

log π
1−π

(math55)
)

exp
(

log π
1−π

(math54)
) = e0.156

odds(math55)

odds(math54)
= e0.156 ≈ 116.9%

Thus, we say for a one-unit increase in math, we expect to see about (116.9−100) = 16.9% increase
in the odds of being in an honors class.

Remark To summarize, this is how we interpret coefficients from a logit regression:

1.) Exponentiate the coefficient (βk) – this is the odds

2.) For every one-unit change in xk, the change in odds is [100× (eβk − 1)]%

4.3 Another way to interpret logit coefficients

Another way to interpret logit coefficients is given by Gelman & Hill (2007, 82). As a first-order
approximation we can use the fact that the logistic curve is steepest in the middle. Since the slope
of the inverse logit is 0.25 at that point, dividing β̂k (from logit) by 4 gives an estimate of the
maximum difference a one-unit change in xk can induce in the probability of a success. In the
example above, we can say that a one-unit increase in math increases the probability of being in an
honors class by at most 0.156

4 = 3.9%.
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