R introduction!

I wrote a really short intro2R document for those who think Verzani is too wordy…

(Verzani is awesome.)

Introduction to R (updated 9/19/2016)

Advertisements

The thing that has been annoying me so much: epsilon-delta proofs

For those who have taken real analysis long time ago, you might have been annoyed by the same thing that has been annoying me recently during math bootcamp: How can I formally define limits and continuities? Here is my thoughts on the formal definition of limit, continuity, and uniform continuity.

Limit is defined

\forall \,\varepsilon>0\,\exists\,\delta>0 \text{ s.t. } 0<|x-x_0|<\delta\,\to\,|f(x)-L|<\varepsilon

Continuity is defined

\forall x, \, \forall \varepsilon>0 \,\exists\,\delta>0\text{ s.t. }|x-x_0|<\delta\to f(x)-f(x_0)<\varepsilon

And uniform continuity is defined

\forall \varepsilon>0 \,\exists\,\delta>0 \text{ s.t }\,,\forall x, \,|x-x_0|<\delta\to f(x)-f(x_0)<\varepsilon

In my opinion, the key difference between limit and continuity is how strict the definition is for each concept. In the continuity definition, we do not stipulate that x\ne x_0 as we do in the limit definition. The difference between continuity and uniform continuity is also a matter of strictness of the definition. And this difference is registered by the order of the quantifiers in our case. Uniform continuity gives us a continuous function for all x in the domain, and is thus much more strict than the pointwise continuity.

ImportError with gensim: cannot import name utils

If you encounter an error message similar to

gensim ImportError: cannot import name utils

then a likely reason is that there are conflicting copies of NumPy, SciPy, or utils. This is a common case for users of Canopy. A quick fix is as follows

pip uninstall numpy
pip uninstall scipy
pip uninstall utils

We then re-install gensim

pip install --upgrade gensim

Re-launch your analysis environment and you should have no problems with importing gensim.  Hopefully it helps!